FLT: measuring tumor cell proliferation in vivo with positron emission tomography and 3'-deoxy-3'-[18F]fluorothymidine.
نویسندگان
چکیده
Positron emission tomography (PET) using the radiotracer 3'-deoxy-3'-[(18)F]fluorothymidine (FLT) can image cellular proliferation in human cancers in vivo. FLT uptake has been shown to correlate with pathology-based proliferation measurements, including the Ki-67 score, in a variety of human cancers. Unlike pathology-based measurements, imaging-based methods, including FLT-PET, are noninvasive, easily repeatable, and less prone to sampling errors. FLT-PET may therefore be a useful tool for assessing tumor aggressiveness, predicting outcome, planning therapy, or monitoring response to treatment. Three recent clinical studies have reported that FLT-PET can accurately predict response very early after the initiation of chemotherapy. Especially with the advent of cytostatic chemotherapy agents, methods of biologically assessing a tumor's response will take on increasing importance, since changes in tumor size will not always be expected. To date, most studies of FLT-PET have focused on validating it as a means of quantifying cellular proliferation and testing its ability to accurately stage cancer. In some settings, FLT-PET has shown greater specificity for cancer than (18)F-fluorodeoxyglucose (FDG)-PET, which can show false-positive uptake in areas of infection or inflammation. However, because of FLT's lower overall uptake and higher background activity in liver and bone marrow, FLT-PET should not be considered a potential replacement for staging by FLT-PET. Instead, FLT-PET should be considered a powerful addition to FDG-PET, providing additional diagnostic specificity and important biological information that could be useful in predicting prognosis, planning treatment, and monitoring response.
منابع مشابه
Preliminary 19F-MRS Study of Tumor Cell Proliferation with 3′-deoxy-3′-fluorothymidine and Its Metabolite (FLT-MP)
The thymidine analogue 3'-deoxy-3'-[18F]fluorothymidine, or [18F]fluorothymidine ([18F]FLT), is used to measure tumor cell proliferation with positron emission tomography (PET) imaging technology in nuclear medicine. FLT is phosphorylated by thymidine kinase 1 (TK1) and then trapped inside cells; it is not incorporated into DNA. Imaging with 18F-radiolabeled FLT is a noninvasive technique to vi...
متن کاملPreclinical Applications of 3'-Deoxy-3'-[18F]Fluorothymidine in Oncology - A Systematic Review
The positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT) has been proposed to measure cell proliferation non-invasively in vivo. Hence, it should provide valuable information for response assessment to tumor therapies. To date, [18F]FLT uptake has found limited use as a response biomarker in clinical trials in part because a better understanding is needed of the...
متن کاملThe Positron Emission Tomography Tracer 3’-Deoxy-3’-[18F]Fluorothymidine ([18F]FLT) Is Not Suitable to Detect Tissue Proliferation Induced by Systemic Yersinia enterocolitica Infection in Mice
Most frequently, gram-negative bacterial infections in humans are caused by Enterobacteriaceae and remain a major challenge in medical diagnostics. We non-invasively imaged moderate and severe systemic Yersinia enterocolitica infections in mice using the positron emission tomography (PET) tracer 3'-deoxy-3'-[18F]fluorothymidine ([18F]FLT), which is a marker of proliferation, and compared the in...
متن کاملComparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging
BACKGROUND The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positiv...
متن کاملMismatched intratumoral distribution of [18F] fluorodeoxyglucose and 3′-deoxy-3′-[18F] fluorothymidine in patients with lung cancer
In a mouse model of human lung cancer, intratumoral distribution between 3'-deoxy-3'-[18F] fluorothymidine (18F-FLT) and [18F] fluorodeoxyglucose (18F-FDG) was mutually exclusive. 18F-FLT primarily accumulated in proliferating cancer cells, whereas 18F-FDG accumulated in hypoxic cancer cells. The aim of the present study was to evaluate these preclinical findings in patients with lung cancer. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Seminars in nuclear medicine
دوره 37 6 شماره
صفحات -
تاریخ انتشار 2007